Major drop in solar activity predicted | Astronomy.com (2024)

Skip to content

We have completed maintenance on Astronomy.com and action may be required on your account. Learn More

  • News
  • Science
    • Science
    • Solar System
    • Exoplanets
    • Stars
    • Milky Way
    • Galaxies
    • Exotic Objects
    • Cosmology
    • Observing
    • In The Sky
    • Upcoming Events
    • The Sun
    • The Moon
    • Planets
    • Deep-Sky Objects
    • Observing Basics
    • Telescopes and Equipment
    • Astrophotography
  • Space Exploration
    • Space Exploration
    • Human Spaceflight
    • Robotic Spaceflight
  • The Magazine
  • Ask Astro
  • News
  • Science
    • Science
    • Solar System
    • Exoplanets
    • Stars
    • Milky Way
    • Galaxies
    • Exotic Objects
    • Cosmology
    • Observing
    • In The Sky
    • Upcoming Events
    • The Sun
    • The Moon
    • Planets
    • Deep-Sky Objects
    • Observing Basics
    • Telescopes and Equipment
    • Astrophotography
  • Space Exploration
    • Space Exploration
    • Human Spaceflight
    • Robotic Spaceflight
  • The Magazine
  • Ask Astro

Three different lines of research indicate that the coming solar maximum could be the last we’ll see for a few decades.

ByNational Solar Observatory, Sunspot, New Mexico | Published: June 14, 2011| Last updated on May 18, 2023

A missing jet stream, fading spots, and slower activity near the poles say that our Sun is heading for a rest period even as it is acting up for the first time in years, according to scientists at the National Solar Observatory (NSO) and the Air Force Research Laboratory (AFRL).

As the current sunspot cycle, Cycle 24, begins to ramp up toward maximum, independent studies of the solar interior, visible surface, and the corona indicate that the next 11-year solar sunspot cycle, Cycle 25, will be greatly reduced or may not happen at all.

“This is highly unusual and unexpected,” Frank Hill, associate director of the NSO’s Solar Synoptic Network, said of the results. “But the fact that three completely different views of the Sun point in the same direction is a powerful indicator that the sunspot cycle may be going into hibernation.”

Spot numbers and other solar activity rise and fall about every 11 years, which is half of the Sun’s 22-year magnetic interval, because the Sun’s magnetic poles reverse with each cycle. An immediate question is whether this slowdown presages a second Maunder Minimum, a 70-year period with virtually no sunspots between 1645 and 1715.

Hill is the lead author on one of three papers on these results being presented this week. Using data from the Global Oscillation Network Group (GONG) of six observing stations around the world, the team translates surface pulsations caused by sound reverberating through the Sun into models of the internal structure. One of its discoveries is an east-west zonal wind flow inside the Sun, called the torsional oscillation, which starts at mid-latitudes and migrates toward the equator. The latitude of this wind stream matches the new spot formation in each cycle, and successfully predicted the late onset of the current Cycle 24.

“We expected to see the start of the zonal flow for Cycle 25 by now,” Hill explained, “but we see no sign of it. This indicates that the start of Cycle 25 may be delayed to 2021 or 2022, or may not happen at all.”

In the second paper, Matt Penn and William Livingston see a long-term weakening trend in the strength of sunspots, and predict that by Cycle 25 magnetic fields erupting on the Sun will be so weak that few if any sunspots will be formed. Spots are formed when intense magnetic flux tubes erupt from the interior and keep cooled gas from circulating back to the interior. For typical sunspots, this magnetism has a strength of 2,500 to 3,500 gauss (Earth’s magnetic field is less than 1 gauss at the surface); the field must reach at least 1,500 gauss to form a dark spot.

Using more than 13 years of sunspot data collected at the McMath-Pierce Telescope at Kitt Peak in Arizona, Penn and Livingston observed that the average field strength declined about 50 gauss per year during Cycle 23 and now in Cycle 24. They also observed that spot temperatures have risen exactly as expected for such changes in the magnetic field. If the trend continues, the field strength will drop below the 1,500 gauss threshold and spots will largely disappear as the magnetic field is no longer strong enough to overcome convective forces on the solar surface.

Moving outward, Richard Altrock, manager of the Air Force’s coronal research program at NSO’s Sunspot, New Mexico, facilities, has observed a slowing of the “rush to the poles,” the rapid poleward march of magnetic activity observed in the Sun’s faint corona. Altrock used 4 decades of observations with NSO’s 16-inch (40cm) coronagraphic telescope at Sunspot.

“A key thing to understand is that those wonderful, delicate coronal features are actually powerful, robust magnetic structures rooted in the interior of the Sun,” Altrock explained. “Changes we see in the corona reflect changes deep inside the Sun.”

Altrock used a photometer to map iron heated to 3.6 million degrees Fahrenheit (2 million degrees Celsius). Stripped of half of its electrons, it is easily concentrated by magnetism rising from the Sun. In a well-known pattern, new solar activity emerges first at about 70° latitude at the start of a cycle, then toward the equator as the cycle ages. At the same time, the new magnetic fields push remnants of the older cycle as far as 85° poleward.

“In cycles 21 through 23, solar maximum occurred when this rush appeared at an average latitude of 76°,” Altrock said. “Cycle 24 started out late and slow and may not be strong enough to create a rush to the poles, indicating we’ll see a very weak solar maximum in 2013, if at all. If the rush to the poles fails to complete, this creates a tremendous dilemma for the theorists, as it would mean that Cycle 23’s magnetic field will not completely disappear from the polar regions (the rush to the poles accomplishes this feat). No one knows what the Sun will do in that case.”

All three of these lines of research to point to the familiar sunspot cycle shutting down for a while.

“If we are right,” Hill concluded, “this could be the last solar maximum we’ll see for a few decades. That would affect everything from space exploration to Earth’s climate.”

Mobile “jet streams” in the Sun migrate from the poles toward the equator as the solar cycle progresses. At left (solar minimum) the red jet streams are located near the poles. At right (solar maximum) they have migrated close to the equator. The jet streams are associated with the locations where sunspots emerge during the solar cycle, and are thought to play an important role in generating the Sun’s magnetic field.

F. Hill, et al. (GONG/NSO/AURA/NSF)

A missing jet stream, fading spots, and slower activity near the poles say that our Sun is heading for a rest period even as it is acting up for the first time in years, according to scientists at the National Solar Observatory (NSO) and the Air Force Research Laboratory (AFRL).

As the current sunspot cycle, Cycle 24, begins to ramp up toward maximum, independent studies of the solar interior, visible surface, and the corona indicate that the next 11-year solar sunspot cycle, Cycle 25, will be greatly reduced or may not happen at all.

“This is highly unusual and unexpected,” Frank Hill, associate director of the NSO’s Solar Synoptic Network, said of the results. “But the fact that three completely different views of the Sun point in the same direction is a powerful indicator that the sunspot cycle may be going into hibernation.”

Spot numbers and other solar activity rise and fall about every 11 years, which is half of the Sun’s 22-year magnetic interval, because the Sun’s magnetic poles reverse with each cycle. An immediate question is whether this slowdown presages a second Maunder Minimum, a 70-year period with virtually no sunspots between 1645 and 1715.

Hill is the lead author on one of three papers on these results being presented this week. Using data from the Global Oscillation Network Group (GONG) of six observing stations around the world, the team translates surface pulsations caused by sound reverberating through the Sun into models of the internal structure. One of its discoveries is an east-west zonal wind flow inside the Sun, called the torsional oscillation, which starts at mid-latitudes and migrates toward the equator. The latitude of this wind stream matches the new spot formation in each cycle, and successfully predicted the late onset of the current Cycle 24.

“We expected to see the start of the zonal flow for Cycle 25 by now,” Hill explained, “but we see no sign of it. This indicates that the start of Cycle 25 may be delayed to 2021 or 2022, or may not happen at all.”

In the second paper, Matt Penn and William Livingston see a long-term weakening trend in the strength of sunspots, and predict that by Cycle 25 magnetic fields erupting on the Sun will be so weak that few if any sunspots will be formed. Spots are formed when intense magnetic flux tubes erupt from the interior and keep cooled gas from circulating back to the interior. For typical sunspots, this magnetism has a strength of 2,500 to 3,500 gauss (Earth’s magnetic field is less than 1 gauss at the surface); the field must reach at least 1,500 gauss to form a dark spot.

Using more than 13 years of sunspot data collected at the McMath-Pierce Telescope at Kitt Peak in Arizona, Penn and Livingston observed that the average field strength declined about 50 gauss per year during Cycle 23 and now in Cycle 24. They also observed that spot temperatures have risen exactly as expected for such changes in the magnetic field. If the trend continues, the field strength will drop below the 1,500 gauss threshold and spots will largely disappear as the magnetic field is no longer strong enough to overcome convective forces on the solar surface.

Moving outward, Richard Altrock, manager of the Air Force’s coronal research program at NSO’s Sunspot, New Mexico, facilities, has observed a slowing of the “rush to the poles,” the rapid poleward march of magnetic activity observed in the Sun’s faint corona. Altrock used 4 decades of observations with NSO’s 16-inch (40cm) coronagraphic telescope at Sunspot.

“A key thing to understand is that those wonderful, delicate coronal features are actually powerful, robust magnetic structures rooted in the interior of the Sun,” Altrock explained. “Changes we see in the corona reflect changes deep inside the Sun.”

Altrock used a photometer to map iron heated to 3.6 million degrees Fahrenheit (2 million degrees Celsius). Stripped of half of its electrons, it is easily concentrated by magnetism rising from the Sun. In a well-known pattern, new solar activity emerges first at about 70° latitude at the start of a cycle, then toward the equator as the cycle ages. At the same time, the new magnetic fields push remnants of the older cycle as far as 85° poleward.

“In cycles 21 through 23, solar maximum occurred when this rush appeared at an average latitude of 76°,” Altrock said. “Cycle 24 started out late and slow and may not be strong enough to create a rush to the poles, indicating we’ll see a very weak solar maximum in 2013, if at all. If the rush to the poles fails to complete, this creates a tremendous dilemma for the theorists, as it would mean that Cycle 23’s magnetic field will not completely disappear from the polar regions (the rush to the poles accomplishes this feat). No one knows what the Sun will do in that case.”

All three of these lines of research to point to the familiar sunspot cycle shutting down for a while.

“If we are right,” Hill concluded, “this could be the last solar maximum we’ll see for a few decades. That would affect everything from space exploration to Earth’s climate.”

Up Next

  • Observing, Science, The Moon

    2024 Full Moon calendar: Dates, times, types, and names

  • Observing, Stars, Upcoming events

    How to see T Coronae Borealis, the ‘brightest nova of the generation’

  • Cosmology

    How can the visible universe be 46 billion light-years in radius when the universe is only 13.8 billion years old?

  • Science

    A Stonehenge mystery could be solved this June

  • Science

    Ephemeral morning frost discovered atop Mars’ tallest volcanoes

  • Science, Solar System

    Starmus spotlights planet Earth: This Week in Astronomy with Dave Eicher

  • Robotic Spaceflight, Science, Space Exploration

    NASA’s asteroid Bennu sample return mission was a prime time to study an artificialmeteor

  • Exotic Objects

    When black holes merge, is the diameter of the new black hole bigger?

  • Exotic Objects, Science, Stars

    A weird, repeating radio signal from space stumps astronomers

Major drop in solar activity predicted | Astronomy.com (2024)
Top Articles
Latest Posts
Article information

Author: Greg Kuvalis

Last Updated:

Views: 6015

Rating: 4.4 / 5 (75 voted)

Reviews: 90% of readers found this page helpful

Author information

Name: Greg Kuvalis

Birthday: 1996-12-20

Address: 53157 Trantow Inlet, Townemouth, FL 92564-0267

Phone: +68218650356656

Job: IT Representative

Hobby: Knitting, Amateur radio, Skiing, Running, Mountain biking, Slacklining, Electronics

Introduction: My name is Greg Kuvalis, I am a witty, spotless, beautiful, charming, delightful, thankful, beautiful person who loves writing and wants to share my knowledge and understanding with you.